21,840 research outputs found

    Azimuthal distinguishability of entangled photons generated in spontaneous parametric down-conversion

    Full text link
    We experimentally demonstrate that paired photons generated in different sections of a down-conversion cone, when some of the interacting waves show Poynting vector walk-off, carry different spatial correlations, and therefore a different degree of spatial entanglement. This is shown to be in agreement with theoretical results. We also discuss how this azimuthal distinguishing information of the down-conversion cone is relevant for the implementation of quantum sources aimed at the generation of entanglement in other degrees of freedom, such as polarization.Comment: 7 pages, 5 figures, submitted to Opt. Expres

    Optical surface modes in the presence of nonlinearity and disorder

    Full text link
    We investigate numerically the effect of the competition of disorder, nonlinearity, and boundaries on the Anderson localization of light waves in finite-size, one-dimensional waveguide arrays. Using the discrete Anderson - nonlinear Schr\"odinger equation, the propagation of the mode amplitudes up to some finite distance is monitored. The analysis is based on the calculated localization length and the participation number, two standard measures for the statistical description of Anderson localization. For relatively weak disorder and nonlinearity, a higher disorder strength is required to achieve the same degree of localization at the edge than in the interior of the array, in agreement with recent experimental observations in the linear regime. However, for relatively strong disorder and/or nonlinearity, this behavior is reversed and it is now easier to localize an excitation at the edge than in the interior.Comment: 5 double-column pages, 7 figures, submitted for publicatio

    Stellar populations in the Carina region: The Galactic plane at l = 291

    Get PDF
    Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. In many cases, these studies only concentrated on the central region or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. The aim of this work is to study in detail an area of the Galactic plane in Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of YSOs and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. We obtained photometric data for six young open clusters located in Carina at l = 291, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations. We find evidence of PMS populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the mass distributions of several clusters in the region. They consistently show a canonical IMF slope. We discover and characterise an abnormally reddened massive stellar population. Spectroscopic observations of ten stars of this latter population show that all selected targets were massive OB stars. Their location is consistent with the position of the Car-Sag spiral arm.Comment: 15 pages, 13 figure

    Coulomb blockade without potential barriers

    Full text link
    We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strength is increased. Our numerics is based on the embedding method and the DMRG algorithm. We explain the emergence of Coulomb blockade with perfect contacts by a reduction of the effective coupling matrix elements between many-body states corresponding to successive particle numbers in the interacting region. A perturbative approach, valid in the strong interaction limit, yields an analytic expression for the interaction-induced suppression of the conductance in the Coulomb blockade regime.Comment: Fixed problems with eps figure

    Inhomogeneous soliton ratchets under two ac forces

    Get PDF
    We extend our previous work on soliton ratchet devices [L. Morales-Molina et al., Eur. Phys. J. B 37, 79 (2004)] to consider the joint effect of two ac forces including non-harmonic drivings, as proposed for particle ratchets by Savele'v et al. [Europhys. Lett. 67}, 179 (2004); Phys. Rev. E {\bf 70} 066109 (2004)]. Current reversals due to the interplay between the phases, frequencies and amplitudes of the harmonics are obtained. An analysis of the effect of the damping coefficient on the dynamics is presented. We show that solitons give rise to non-trivial differences in the phenomenology reported for particle systems that arise from their extended character. A comparison with soliton ratchets in homogeneous systems with biharmonic forces is also presented. This ratchet device may be an ideal candidate for Josephson junction ratchets with intrinsic large damping

    Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities

    Get PDF
    We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a periodic, asymmetric lattice of point-like inhomogeneities. We explain the underlying rectification mechanism within a collective coordinate framework, which shows that such system behaves as a rocking ratchet for point particles. Careful attention is given to the kink width dynamics and its role in the transport. We also analyze the robustness of our kink rocking ratchet in the presence of noise. We show that the noise activates unidirectional motion in a parameter range where such motion is not observed in the noiseless case. This is subsequently corroborated by the collective variable theory. An explanation for this new phenomenom is given
    • …
    corecore